my-solutions/advent-of-code/2024/day_06/lib.rb

131 lines
2.3 KiB
Ruby

def walk(matrix)
should_continue = true
i, j = get_current_position(matrix)
start_i = i
start_j = j
start_symbol = matrix[i][j]
history = {}
while should_continue
history["#{i},#{j}"] = true
should_continue, i, j = make_step(matrix, i, j)
end
matrix[start_i][start_j] = start_symbol
history.length
end
def make_step(matrix, i, j)
case matrix[i][j]
when '^'
if i == 0
matrix[i][j] = '.'
return [false, -1, -1]
end
if matrix[i - 1][j] == '#'
matrix[i][j] = '>'
return [true, i, j]
end
matrix[i - 1][j] = '^'
matrix[i][j] = '.'
[true, i - 1, j]
when 'v'
if i == matrix.length - 1
matrix[i][j] = '.'
return [false, -1, -1]
end
if matrix[i + 1][j] == '#'
matrix[i][j] = '<'
return [true, i, j]
end
matrix[i + 1][j] = 'v'
matrix[i][j] = '.'
[true, i + 1, j]
when '>'
if j == matrix[i].length - 1
matrix[i][j] = '.'
return [false, -1, -1]
end
if matrix[i][j + 1] == '#'
matrix[i][j] = 'v'
return [true, i, j]
end
matrix[i][j + 1] = '>'
matrix[i][j] = '.'
[true, i, j + 1]
when '<'
if j == 0
matrix[i][j] = '.'
return [false, -1, -1]
end
if matrix[i][j - 1] == '#'
matrix[i][j] = '^'
return [true, i, j]
end
matrix[i][j - 1] = '<'
matrix[i][j] = '.'
[true, i, j - 1]
end
end
def get_current_position(matrix)
for i in 0..matrix.length - 1 do
for j in 0..matrix[i].length - 1 do
return [i, j] if ['^', '>', 'v', '<'].include?(matrix[i][j])
end
end
[]
end
def count_possible_obstructions(matrix)
count = 0
start_i, start_j = get_current_position(matrix)
start_symbol = matrix[start_i][start_j]
for i in 0..matrix.length - 1 do
for j in 0..matrix[i].length - 1 do
next if matrix[i][j] != '.'
matrix[i][j] = '#'
count += 1 if test_loop(matrix, start_i, start_j)
matrix[i][j] = '.'
matrix[start_i][start_j] = start_symbol
end
end
count
end
def test_loop(matrix, i, j)
should_continue = true
history = {}
while should_continue
symbol = matrix[i][j]
key = "#{i},#{j},#{symbol}"
if history.include?(key)
matrix[i][j] = '.'
return true
end
history[key] = true
should_continue, i, j = make_step(matrix, i, j)
end
false
end